By Topic

The regularity lemma and approximation schemes for dense problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Frieze, A. ; Dept. of Math. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Kannan, R.

There are two main contributions of the present paper. In the first, we use the constructive version of the Regularity Lemma to give directly simple polynomial time approximation schemes for several graph “subdivision” problems in dense graphs including the Max Cut problem, the Graph Bisection problem, the Min l-way cut problem and Graph Separator problem. Arora, Karger and Karpinski (1992) gave the first PTASs for these problems whose running time is O(no(1/e2) ). Our PTASs have running time where the exponent of n is a constant independent of e. The central point here is that the Regularity Lemma provides an explanation of why these Max-SNP hard problems turn out to be easy in dense graphs. We also give a simple PTAS for dense versions of a special case of the Quadratic Assignment Problem (QAP)

Published in:

Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on

Date of Conference:

14-16 Oct 1996