Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Activity Based Matching in Distributed Camera Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ermis, E.B. ; Boston Univ., Boston, MA, USA ; Clarot, P. ; Jodoin, P. ; Saligrama, V.

In this paper, we consider the problem of finding correspondences between distributed cameras that have partially overlapping field of views. When multiple cameras with adaptable orientations and zooms are deployed, as in many wide area surveillance applications, identifying correspondence between different activities becomes a fundamental issue. We propose a correspondence method based upon activity features that, unlike photometric features, have certain geometry independence properties. The proposed method is robust to pose, illumination and geometric effects, unsupervised (does not require any calibration objects). In addition, these features are amenable to low communication bandwidth and distributed network applications. We present quantitative and qualitative results with synthetic and real life examples, and compare the proposed method with scale invariant feature transform (SIFT) based method. We show that our method significantly outperforms the SIFT method when cameras have significantly different orientations. We then describe extensions of our method in a number of directions including topology reconstruction, camera calibration, and distributed anomaly detection.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 10 )