Cart (Loading....) | Create Account
Close category search window
 

Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiang Zhu ; Dept. of Electr. Eng., Univ. of California, Santa Cruz, CA, USA ; Milanfar, P.

Across the field of inverse problems in image and video processing, nearly all algorithms have various parameters which need to be set in order to yield good results. In practice, usually the choice of such parameters is made empirically with trial and error if no “ground-truth” reference is available. Some analytical methods such as cross-validation and Stein's unbiased risk estimate (SURE) have been successfully used to set such parameters. However, these methods tend to be strongly reliant on restrictive assumptions on the noise, and also computationally heavy. In this paper, we propose a no-reference metric Q which is based upon singular value decomposition of local image gradient matrix, and provides a quantitative measure of true image content (i.e., sharpness and contrast as manifested in visually salient geometric features such as edges,) in the presence of noise and other disturbances. This measure 1) is easy to compute, 2) reacts reasonably to both blur and random noise, and 3) works well even when the noise is not Gaussian. The proposed measure is used to automatically and effectively set the parameters of two leading image denoising algorithms. Ample simulated and real data experiments support our claims. Furthermore, tests using the TID2008 database show that this measure correlates well with subjective quality evaluations for both blur and noise distortions.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 12 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.