By Topic

Multitarget Visual Tracking Based Effective Surveillance With Cooperation of Multiple Active Cameras

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Ming Huang ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Li-Chen Fu

This paper presents a tracking-based surveillance system that is capable of tracking multiple moving objects, with almost real-time response, through the effective cooperation of multiple pan-tilt cameras. To construct this surveillance system, the distributed camera agent, which tracks multiple moving objects independently, is first developed. The particle filter is extended with target depth estimate to track multiple targets that may overlap with one another. A strategy to select the suboptimal camera action is then proposed for a camera mounted on a pan-tilt platform that has been assigned to track multiple targets within its limited field of view simultaneously. This strategy is based on the mutual information and the Monte Carlo method to maintain coverage of the tracked targets. Finally, for a surveillance system with a small number of active cameras to effectively monitor a wide space, this system is aimed to maximize the number of targets to be tracked. We further propose a hierarchical camera selection and task assignment strategy, known as the online position strategy, to integrate all of the distributed camera agents. The overall performance of the multicamera surveillance system has been verified with computer simulations and extensive experiments.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 1 )