By Topic

Measurement, Reconstruction, and Flow-Field Computation of the Human Pharynx With Application to Sleep Apnea

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Lucey, A.D. ; Fluid Dynamics Res. Group, Curtin Univ., Perth, WA, Australia ; King, A.J.C. ; Tetlow, G.A. ; Wang, J.
more authors

Repetitive closure of the upper airway characterizes obstructive sleep apnea. It disrupts sleep causing excessive daytime drowsiness and is linked to hypertension and cardiovascular disease. Previous studies simulating the underlying fluid mechanics are based upon geometries, time-averaged over the respiratory cycle, obtained usually via MRI or CT scans. Here, we generate an anatomically correct geometry from data captured in vivo by an endoscopic optical technique. This allows quantitative real-time imaging of the internal cross section with minimal invasiveness. The steady inhalation flow field is computed using a k- shear-stress transport (SST) turbulence model. Simulations reveal flow mechanisms that produce low-pressure regions on the sidewalls of the pharynx and on the soft palate within the pharyngeal section of minimum area. Soft-palate displacement and side-wall deformations further reduce the pressures in these regions, thus creating forces that would tend to narrow the airway. These phenomena suggest a mechanism for airway closure in the lateral direction as clinically observed. Correlations between pressure and airway deformation indicate that quantitative prediction of the low-pressure regions for an individual are possible. The present predictions warrant and can guide clinical investigation to confirm the phenomenology and its quantification, while the overall approach represents an advancement toward patient-specific modeling.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 10 )