By Topic

Wafer-Level Parylene Packaging With Integrated RF Electronics for Wireless Retinal Prostheses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wen Li ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Rodger, D.C. ; Meng, E. ; Weiland, J.D.
more authors

This paper presents an embedded chip integration technology that incorporates silicon housings and flexible Parylene-based microelectromechanical systems (MEMS) devices. Accelerated-lifetime soak testing is performed in saline at elevated temperatures to study the packaging performance of Parylene C thin films. Experimental results show that the silicon chip under test is well protected by Parylene, and the lifetime of Parylene-coated metal at body temperature (37°C) is more than 60 years, indicating that Parylene C is an excellent structural and packaging material for biomedical applications. To demonstrate the proposed packaging technology, a flexible MEMS radio-frequency (RF) coil has been integrated with an RF identification (RFID) circuit die. The coil has an inductance of 16 μH with two layers of metal completely encapsulated in Parylene C, which is microfabricated using a Parylene-metal-Parylene thin-film technology. The chip is a commercially available read-only RFID chip with a typical operating frequency of 125 kHz. The functionality of the embedded chip has been tested using an RFID reader module in both air and saline, demonstrating successful power and data transmission through the MEMS coil.

Published in:

Microelectromechanical Systems, Journal of  (Volume:19 ,  Issue: 4 )