By Topic

Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kai Yao ; Aero-Power Sci-Tech Center, Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China ; Xinbo Ruan ; Xiaojing Mao ; Zhihong Ye

A discontinuous-current-mode (DCM) boost power factor correction (PFC) converter features zero-current turn-on for the switch, no reverse recovery in diode, and constant-frequency operation. However, the input power factor (PF) is relatively low when the duty cycle is constant in a half line cycle. This paper derives the expressions of the input current and PF of the DCM boost PFC converter, and based on that, variable-duty-cycle control is proposed so as to improve the PF to nearly unity in the whole input-voltage range. A method of fitting the duty cycle is further proposed for simplifying the circuit implementation. Other than a higher PF, the proposed variable-duty-cycle control achieves a lower output-voltage ripple and a higher efficiency over constant-duty-cycle control. The experimental results from a 120-W universal input prototype are presented to verify the effectiveness of the proposed method.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 5 )