By Topic

Random Access Protocols for Collaborative Spectrum Sensing in Multi-Band Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rong-Rong Chen ; Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA ; Koon Hoo Teo ; Behrouz Farhang-Boroujeny

In this paper, collaborative sensing and distributed detection are addressed in the context of multi-band cognitive radios. In a cognitive radio network, all the nodes may sense the spectrum simultaneously. They should then exchange their sensing results in order to improve the reliability of the detection. This exchange of information has to be done effectively to improve the bandwidth efficiency of the network. We propose a generalized medium access control (MAC) signaling protocol based on random access and study its performance through a thorough theoretical analysis. We begin with a nonadaptive protocol with fixed parameters. The numerical results obtained from analysis reveals that the fixed parameter protocol is not robust to the variation of the network conditions which, in general, are unknown a priori. We thus extend the proposed protocol to an adaptive one. Analysis of this adaptive protocol reveals its much superior performance. Our analysis covers a wide range of network conditions, including the case where some spectral activities may be hidden from a few of cognitive nodes and the case when a cognitive node senses only a subset of spectral bands. All theoretical results are corroborated through computer simulations.

Published in:

IEEE Journal of Selected Topics in Signal Processing  (Volume:5 ,  Issue: 1 )