By Topic

Model-Based Weather Radar Remote Sensing of Explosive Volcanic Ash Eruption

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marzano, F.S. ; Dept. of Electron. Eng., Sapienza Univ. of Rome, Rome, Italy ; Marchiotto, S. ; Textor, C. ; Schneider, D.J.

Microphysical and dynamical features of volcanic ash clouds can be quantitatively monitored by using ground-based microwave weather radars. These systems can provide data for determining the ash volume, total mass, and height of eruption clouds. In order to demonstrate the unique potential of this microwave active remote-sensing technique, the case study of the eruption of Augustine Volcano in Alaska in January 2006 is described and analyzed. Volume scan data, acquired by a NEXRAD WSR-88D S-band ground-based weather radar, are processed to automatically classify and estimate eruptive cloud particle concentration. The numerical results of the coupled model Z-reflectivity from Active Tracer High resolution Atmospheric Model (ATHAM), including particle aggregation processes and simulation of radar reflectivity from the ATHAM microphysical model, are exploited to train the inversion algorithm. The volcanic ash radar retrieval based on the ATHAM algorithm is a physical-statistical approach based on the backscattering microphysical model of volcanic cloud particles (hydrometeors, ash, and aggregates), used within a Bayesian classification and optimal regression algorithm. A sensitivity analysis is carried out to evaluate the overall error budget. The evolution of the Augustine eruption is discussed in terms of radar measurements and products, pointing out the unique features, the current limitations, and future improvements of radar remote sensing of volcanic plumes.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 10 )