By Topic

Canonical Correlation Analysis for Data Fusion and Group Inferences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nicolle M. Correa ; She is currently a Ph.D. candidate in the Machine Learning for Signal Processing Laboratory at UMBC. ; Tulay Adali ; Yi-Ou Li ; Vince D. Calhoun

We have presented two CCA-based approaches for data fusion and group analysis of biomedical imaging data and demonstrated their utility on fMRI, sMRI, and EEG data. The results show that CCA and M-CCA are powerful tools that naturally allow the analysis of multiple data sets. The data fusion and group analysis methods presented are completely data driven, and use simple linear mixing models to decompose the data into their latent components. Since CCA and M-CCA are based on second-order statistics they provide a relatively lessstrained solution as compared to methods based on higherorder statistics such as ICA. While this can be advantageous, the flexibility also tends to lead to solutions that are less sparse than those obtained using assumptions of non-Gaussianity-in particular superGaussianity-at times making the results more difficult to interpret. Thus, it is important to note that both approaches provide complementary perspectives, and hence it is beneficial to study the data using different analysis techniques.

Published in:

IEEE Signal Processing Magazine  (Volume:27 ,  Issue: 4 )