By Topic

Tool Wear Monitoring Using Acoustic Emissions by Dominant-Feature Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun-Hong Zhou ; Sch. of Mech. & Aerosp. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Chee Khiang Pang ; Zhao-Wei Zhong ; Lewis, F.L.

Identification and online prediction of lifetime of cutting tools using cheap sensors is crucial to reduce production costs and downtime in industrial machines. In this paper, we use the acoustic emission from an embedded sensor for computation of features and prediction of tool wear. Acoustic sensors are cheap and nonintrusive, coupled with fast dynamic responses as compared with conventional force measurements using dynamometers. A reduced feature subset, which is optimal in both estimation and clustering least squares errors, is then selected using a new dominant-feature identification algorithm to reduce the signal processing and number of sensors required. Tool wear is then predicted using an Auto-Regressive Moving Average with eXogenous inputs model based on the reduced features. Our experimental results on a ball nose cutter in a high-speed milling machine show the effectiveness in predicting the tool wear using only the dominant features. A reduction in 16.83% of mean relative error is observed when compared to the other methods proposed in the literature.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 2 )