By Topic

Detection of Suspicious Lesions by Adaptive Thresholding Based on Multiresolution Analysis in Mammograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kai Hu ; Key Lab. of Intell. Comput. & Inf. Process. of Minist. of Educ., Xiangtan Univ., Xiangtan, China ; Xieping Gao ; Fei Li

Mammography is the most effective procedure for the early detection of breast cancer. In this paper, we develop a novel algorithm to detect suspicious lesions in mammograms. The algorithm utilizes the combination of adaptive global thresholding segmentation and adaptive local thresholding segmentation on a multiresolution representation of the original mammogram. The algorithm has been verified with 170 mammograms in the Mammographic Image Analysis Society MiniMammographic database. The experimental results show that the detection method has a sensitivity of 91.3% at 0.71 false positives per image.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 2 )