By Topic

Distributed Geometric Fuzzy Multiagent Urban Traffic Signal Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gokulan, B.P. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Srinivasan, D.

Rapid urbanization and the growing demand for faster transportation has led to heavy congestion in road traffic networks, necessitating the need for traffic-responsive intelligent signal control systems. The developed signal control system must be capable of determining the green time that minimizes the network-wide travel time delay based on limited information of the environment. This paper adopts a distributed multiagent-based approach to develop a traffic-responsive signal control system, i.e., the geometric fuzzy multiagent system (GFMAS), which is based on a geometric type-2 fuzzy inference system. GFMAS is capable of handling the various levels of uncertainty found in the inputs and rule base of the traffic signal controller. Simulation models of the agents designed in PARAMICS were tested on virtual road network replicating a section of the central business district in Singapore. A comprehensive analysis and comparison was performed against the existing traffic-control algorithms green link determining (GLIDE) and hierarchical multiagent system (HMS). The proposed GFMAS signal control outperformed both the benchmarks when tested for typical traffic-flow scenarios. Further tests show the superior performance of the proposed GFMAS in handling unplanned and planned incidents and obstructions. The promising results demonstrate the efficiency of the proposed multiagent architecture and scope for future development.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:11 ,  Issue: 3 )