Cart (Loading....) | Create Account
Close category search window
 

Characterization of Single-Photon Avalanche Diodes in a 0.5 \mu m Standard CMOS Process—Part 1: Perimeter Breakdown Suppression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dandin, Marc ; Fischell Dept. of Bioeng., Univ. of Maryland, College Park, MD, USA ; Akturk, A. ; Nouri, B. ; Goldsman, N.
more authors

We report on the breakdown characteristics of a single-photon avalanche diode structure fabricated in a 0.5 μm single-well CMOS process. This paper features two mechanisms for reducing perimeter breakdown. The first mechanism consists of using the lateral diffusion of adjacent n-wells to reduce the electric field at the diode's periphery, and the second makes use of a poly-silicon gate over the high field regions to modulate the electric field. We studied each technique independently as well as their combined effect on the devices' avalanche profiles. In addition to marked alterations in the current-voltage curves near and above breakdown, the diodes' breakdown voltages were increased by more than 4 V, indicating that perimeter breakdown was curtailed. We verified this assertion through a self-consistently solved 2-D numerical model based on Poisson's equation and the hole and electron current continuity equations coupled with rate equations for carrier generation due to impact ionization. The model revealed spatial maxima of the charge generation rates, thereby indicating regions susceptible to breakdown. Our investigation revealed that in native diodes, the generation rate peaked at the perimeter and near the junction's surface, suggesting perimeter breakdown. Conversely, in devices where suppression techniques were used, the region of maximum generation spread laterally and away from the surface, indicating full volumetric breakdown was achieved.

Published in:

Sensors Journal, IEEE  (Volume:10 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.