Cart (Loading....) | Create Account
Close category search window

CMOS Interfacing for Integrated Gas Sensors: A Review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gardner, J.W. ; Sch. of Eng., Univ. of Warwick, Coventry, UK ; Guha, P.K. ; Udrea, F. ; Covington, J.A.

Modern gas sensor technology is becoming an important part of our lives. It has been applied within the home (monitoring CO levels from boilers), the workplace (e.g., checking levels of toxic gases) to healthcare (monitoring gases in hospitals). However, historically the high price of gas sensors has limited market penetration to niche applications, such as safety in mines or petrochemical plants. The high price may be attributed to several different components: (1) cost of a predominantly manual manufacturing process; (2) need for interface circuitry in the form of discrete components on a PCB; and (3) fireproof packaging, making the cost of gas detection instruments typically many hundreds of dollars. Consequently, there has been a considerable effort over the past 20 years, towards the goal of low-cost ($1-$5) gas sensors, employing modern microelectronics technology to manufacture both the sensing element and the signal conditioning circuitry on a single silicon chip. In this paper, we review the emerging field of CMOS gas sensors and focus upon the integration of two main gas-sensing principles, namely, resistive and electrochemical and associated circuitry by CMOS technology. We believe that the combination of CMOS technology with more recent MEMS processing is now mature enough to deliver the exacting demands required to make low-power, low-cost smart gas sensors in high volume and this should result in a new generation of CMOS gas sensors. These new integrated, mass-produced gas sensors could open up mass markets and affect our everyday lives through application in cars, cell phones, watches, etc.

Published in:

Sensors Journal, IEEE  (Volume:10 ,  Issue: 12 )

Date of Publication:

Dec. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.