By Topic

Contour Optimization of Suspension Insulators Using Dynamically Adjustable Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen-Shiush Chen ; Department of EE, National United University, Chung Yuan University, Miao-Li, Chung-Li, TaiwanTaiwan ; Hong-Tzer Yang ; Hong-Yu Huang

Electrical-field distribution along the insulator surface strongly depends upon the contour design, besides the effect of pollution. The insulator contour should be designed to reach a desired uniform and minimal tangential field to increase the onset voltage of surface flashover. In this paper, with the charge simulation method (CSM) integrated, the dynamically adjustable genetic algorithm (DAGA) approach is proposed for contour optimization of a suspension insulator. The aim of the contour optimization is to minimize and make the tangential electric field uniform and to minimize the size of the insulator, subject to design constraints. In the proposed approach, the cubic spline function based on control (or contour) points on the insulator surface is optimized to derive the desired contour. The results show that a rather uniform and minimal tangential field distribution with a smaller suspension insulator can be obtained through the proposed approach in comparison with the commercial insulator practically deployed in transmission systems.

Published in:

IEEE Transactions on Power Delivery  (Volume:25 ,  Issue: 3 )