By Topic

A Fully Integrated CMOS Accelerometer Using Bondwire Inertial Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Te Liao ; Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA ; William J. Biederman ; Brian P. Otis

This paper presents the design, implementation, and characterization of a fully integrated accelerometer using a bondwire inertial sensor. The accelerometer was implemented in a standard CMOS process without microelectromechanical processing. The system consists of a gold and aluminum bondwire inertial sensor and readout circuitry. Finite-element analysis was used to characterize the mechanical performance of the accelerometer and reinforce empirical data. The system includes a fully differential frequency modulation downconversion architecture and consumes 13.5 mW while achieving a gain of 10 kHz/g, a bandwidth of 700 Hz, and a resolution of 80 mg. The chip was fabricated in an 0.13-m CMOS process with an area of 1.1 mm.

Published in:

IEEE Sensors Journal  (Volume:11 ,  Issue: 1 )