Cart (Loading....) | Create Account
Close category search window

Distributed Adaptive Node-Specific Signal Estimation in Fully Connected Sensor Networks—Part I: Sequential Node Updating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bertrand, A. ; Dept. of Electr. Eng. (ESAT-SCD/ SISTA), Katholieke Univ. Leuven, Leuven, Belgium ; Moonen, M.

We introduce a distributed adaptive algorithm for linear minimum mean squared error (MMSE) estimation of node-specific signals in a fully connected broadcasting sensor network where the nodes collect multichannel sensor signal observations. We assume that the node-specific signals to be estimated share a common latent signal subspace with a dimension that is small compared to the number of available sensor channels at each node. In this case, the algorithm can significantly reduce the required communication bandwidth and still provide the same optimal linear MMSE estimators as the centralized case. Furthermore, the computational load at each node is smaller than in a centralized architecture in which all computations are performed in a single fusion center. We consider the case where nodes update their parameters in a sequential round robin fashion. Numerical simulations support the theoretical results. Because of its adaptive nature, the algorithm is suited for real-time signal estimation in dynamic environments, such as speech enhancement with acoustic sensor networks.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.