By Topic

Tomographic SAR Inversion by L_{1} -Norm Regularization—The Compressive Sensing Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiao Xiang Zhu ; Lehrstuhl fur Methodik der Fernerkundung, Tech. Univ. Munchen, Munich, Germany ; Bamler, R.

Synthetic aperture radar (SAR) tomography (TomoSAR) extends the synthetic aperture principle into the elevation direction for 3-D imaging. The resolution in the elevation direction depends on the size of the elevation aperture, i.e., on the spread of orbit tracks. Since the orbits of modern meter-resolution spaceborne SAR systems, like TerraSAR-X, are tightly controlled, the tomographic elevation resolution is at least an order of magnitude lower than in range and azimuth. Hence, super-resolution reconstruction algorithms are desired. The high anisotropy of the 3-D tomographic resolution element renders the signals sparse in the elevation direction; only a few pointlike reflections are expected per azimuth-range cell. This property suggests using compressive sensing (CS) methods for tomographic reconstruction. This paper presents the theory of 4-D (differential, i.e., space-time) CS TomoSAR and compares it with parametric (nonlinear least squares) and nonparametric (singular value decomposition) reconstruction methods. Super-resolution properties and point localization accuracies are demonstrated using simulations and real data. A CS reconstruction of a building complex from TerraSAR-X spotlight data is presented.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 10 )