By Topic

Generation of Intense Terahertz Radiation via Optical Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Blanchard, F. ; Centre Energie, Mater. et Telecommun., Univ. of Quebec, Varennes, QC, Canada ; Sharma, Gargi ; Razzari, L. ; Ropagnol, X.
more authors

The development of new sources in the terahertz (THz) spectral region has attracted much attention over the past 20 years. In particular, the last three years have seen a surge of new laser-based techniques for generating intense, few-cycle THz pulses in the microjoule energy range, thus paving the way to the study of the nonlinear optical properties of various materials at THz frequencies. Simultaneously, innovative solutions for broad-band THz detection were found, allowing one to sense matter in the THz range with an unprecedented time resolution. In this paper, we will attempt to give a review of the properties and characteristics of the recently developed intense THz sources, with a particular eye on their potential application in ultrafast THz nonlinear spectroscopy.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 1 )