By Topic

TurboPixel Segmentation Using Eigen-Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shiming Xiang ; Nat. Lab. of Pattern Recognition (NLPR), Chinese Acad. of Sci., Beijing, China ; Chunhong Pan ; Feiping Nie ; Changshui Zhang

TurboPixel (TP) is a powerful tool for image over-segmentation. It is fast and can yield a lattice-like structure of superpixel regions with uniform size. This paper presents a method to learn eigen-images from the image to be segmented. Such eigen-images are used to generate the evolution speed in the TP framework. The task is formulated as a problem of pixel clustering. Specifically, for the pixels in each local window, a linear transformation is introduced to map their color vectors to be the cluster indicator vectors. The errors under all such linear transformations are estimated and summed together to obtain an objective function, from which a global optimum is finally obtained. In this process, the eigen-images are constructed. Based upon these eigen-images, multidimensional image gradient operator is defined to evaluate the gradient, which is supplied to the TP algorithm to obtain the final superpixel segmentations. The computational issues are discussed, and an image pyramid is introduced to speed up the computation. Comparative experiments illustrate the effectiveness of our method.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 11 )