Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Multi-View Video Summarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yanwei Fu ; Nat. Key Lab. for Novel Software Technol., Nanjing Univ., Nanjing, China ; Yanwen Guo ; Yanshu Zhu ; Feng Liu
more authors

Previous video summarization studies focused on monocular videos, and the results would not be good if they were applied to multi-view videos directly, due to problems such as the redundancy in multiple views. In this paper, we present a method for summarizing multi-view videos. We construct a spatio-temporal shot graph and formulate the summarization problem as a graph labeling task. The spatio-temporal shot graph is derived from a hypergraph, which encodes the correlations with different attributes among multi-view video shots in hyperedges. We then partition the shot graph and identify clusters of event-centered shots with similar contents via random walks. The summarization result is generated through solving a multi-objective optimization problem based on shot importance evaluated using a Gaussian entropy fusion scheme. Different summarization objectives, such as minimum summary length and maximum information coverage, can be accomplished in the framework. Moreover, multi-level summarization can be achieved easily by configuring the optimization parameters. We also propose the multi-view storyboard and event board for presenting multi-view summaries. The storyboard naturally reflects correlations among multi-view summarized shots that describe the same important event. The event-board serially assembles event-centered multi-view shots in temporal order. Single video summary which facilitates quick browsing of the summarized multi-view video can be easily generated based on the event board representation.

Published in:

Multimedia, IEEE Transactions on  (Volume:12 ,  Issue: 7 )