Cart (Loading....) | Create Account
Close category search window

High-Precision Position Control of a Linear-Switched Reluctance Motor Using a Self-Tuning Regulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shi Wei Zhao ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Kowloon, China ; Cheung, N.C. ; Wai-Chuen Gan ; Jin Ming Yang

High-precision position control of linear-switched reluctance motor (LSRM) is important in motion-control industry. The static model-based controller sometimes cannot give satisfactory output performance due to the inherent nonlinearities of LSRM and the uncertainties of the system. In this paper, a self-tuning regulator (STR) based on the pole-placement algorithm is proposed for high-precision position tracking of the LSRM. Following the time-scale characteristics analysis of LSRM position-tracking system and force-characteristic investigation, the position-tracking model is treated as a second-order system. Different from the static model-based control schemes, the dynamic model of the LSRM can be obtained by online estimation. Also, some practical aspects are taken into account. Owing to the unmodeled dynamics and high-frequency measurement noises, there are some oscillations in the practical control signals, and they can be reduced by a properly designed filter. Both the simulation and experimental results demonstrate that, in the control of the proposed STR, the position-tracking system can reproduce the reference signal with the desired performance in harsh ambient. These results confirm that the method is effective and robust in the high-precision position tracking of LSRM.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.