By Topic

Multiaxial Haar-Like Feature and Compact Cascaded Classifier for Versatile Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Nishimura ; Department of Electrical Engineering, Keio University, Yokohama, Japan ; Tadahiro Kuroda

A versatile recognition algorithm has been proposed to process image, sound, and 3-D acceleration signals with a common framework at low calculation cost. Firstly, a novel 1-D Haar-like feature is used to roughly extract frequency information from temporal signals. Biaxial and mean-embedded Haar-like features are proposed to extract the standard deviation and the interaxial correlation from 3-D acceleration signals. Secondly, two techniques are proposed to build a compact cascaded classifier. Redundant feature selection (RFS) incorporates the features which are already selected in previous stage classifiers to reduce the calculation cost. A dynamic look-up table (DLUT) is proposed to construct a look-up table-based weak classifier with the smallest possible number of bins. A train loss function is by globally optimized using dynamic programming. The proposed algorithm is tested experimentally on speech/nonspeech classification and human activity recognition. The proposed algorithm yields a speech/nonspeech classification performance comparable to the state-of-art method called MFCC while reducing the calculation cost by 100 times. The algorithm also achieves human activity recognition accuracy of 96.1% with calculation cost reduction of 84% compared with the state-of-art method based on C4.5 decision-tree classifier using the basic statistical features. The proposed algorithm has been employed to build the versatile recognition processor.

Published in:

IEEE Sensors Journal  (Volume:10 ,  Issue: 11 )