By Topic

{\hbox {NO}}_{2} Gas Sensing Properties of ZnO/Single-Wall Carbon Nanotube Composites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Albiss, B.A. ; Dept. of Phys., Jordan Univ. of Sci. & Technol., Irbid, Jordan ; Sakhaneh, W.A. ; Jumah, I. ; Obaidat, I.M.

Networks of ZnO/single-wall carbon nanotube (ZnO/ SWNT) composites were investigated as resistive gas sensors for NO2 detection. Sensor films were spin coated on sapphire substrates. Sensors' response, in dry air and in NO2 atmosphere, was measured by resistance measurements in the temperature range from 25 to 300° C and gas concentration from 1 to 1000 ppm. At room temperature, ZnO/SWNT composites with equal weight ratio have shown quite high sensitivity to NO2 concentrations as low as 1 ppm. Significant increase in the sensitivity of the composite at higher temperatures up to 300° C compared to that of ZnO free SWNTs. All tested sensors exhibited high stability and relatively low response and recovery times. The highest response values of the composite were obtained at temperatures ranging between 100 °C and 300 °C and gas concentrations higher that 50 ppm. For all gas concentrations, the ZnO/SWNT sensor shows much better performance at temperatures higher than 100° C compared to the SWNT sensor. Our results revealed that the measured sensitivity upon exposure to NO2 strongly depends on the microstructure and the preparation conditions of the composite material. The gas detection mechanisms along with the optimal gas sensing parameters were discussed.

Published in:

Sensors Journal, IEEE  (Volume:10 ,  Issue: 12 )