By Topic

Telescope Aiming Point Tracking Method for Bioptic Driving Surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xianping Fu ; Inf. Sci. & Technol. Coll., Dalian Maritime Univ., Dalian, China ; Gang Luo ; Peli, E.

A bioptic telescope is a visual aid used by people with impaired vision when driving in many U.S. states, though bioptic driving remains controversial. Objective data on how and when bioptic drivers use the telescope and what they look at with it are crucial to understanding the bioptic telescope's effects on driving. A video-based technique to track the telescope's aiming point is presented in this paper. With three infrared retro-reflective markers pasted on the bioptic spectacles frame, its movement is recorded using an infrared camera unit with infrared LED illuminators. The angles formed by the three markers are used to calculate the telescope's aiming points, which are registered with road scene images recorded by another camera. The calculation is based on a novel one-time calibration method, in which the light spot from a head-mounted laser pointer projected on a wall while the scanning is recorded by the scene camera, in synchronization with the infrared camera. Interpolation is performed within small local regions where no samples were taken. Thus, nonlinear interpolation error can be minimized, even for wide-range tracking. Experiments demonstrated that the average error over a 70° × 48° field was only 0.86°, with lateral head movement allowed.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 6 )