By Topic

A Fiber Bragg Grating-Based All-Fiber Sensing System for Telerobotic Cutting Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ginu Rajan ; Photonics Research Centre, School of Electronic and Communications Engineering, Dublin Institute of Technology, Dublin 8, Ireland ; Dean Callaghan ; Yuliya Semenova ; Mark McGrath
more authors

A fiber Bragg grating (FBG)-based strain sensing system for minimally invasive telerobotic cutting applications is presented in this paper. Investigations assume that a scissor blade can be approximated as a uniformly tapered cantilever beam. A replica of the scissor blade is produced and strain characterization has been carried out using an FBG sensor system. Results are validated against measurements obtained using conventional electrical resistance strain gauges. The scissor blade experiences both direct and lateral forces during cutting, hence the system is characterized for a direct load range of 0-30 N and a lateral load range of 0-10 N. The results show a very good linear response for direct loading and some sensitivity to lateral loading. An actual sensorized scissor blade prototype is also characterized and results compared with that of the replica blade. The FBG interrogation system used was a macro-bend fiber filter-based ratiometric system. The use of FBGs together with macro-bend fiber-based interrogation system eliminates the influence of temperature on the sensing system and hence temperature independent strain information from the blade is obtained. The results obtained using the macro-bend fiber filter are compared with that of a commercial interrogation system and found to be in agreement. By implementing an all fiber sensing system based on fiber Bragg gratings and macrobend fiber filter interrogation system, remote operation of telerobotic cutting applications can be made more cost effective while providing a competitive accuracy and resolution solution.

Published in:

IEEE Sensors Journal  (Volume:10 ,  Issue: 12 )