By Topic

Genetic evolution of radial basis function coverage using orthogonal niches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
B. A. Whitehead ; Tennessee Univ. Space Inst., Tullahoma, TN, USA

A well-performing set of radial basis functions (RBFs) can emerge from genetic competition among individual RBFs. Genetic selection of the individual RBFs is based on credit sharing which localizes competition within orthogonal niches. These orthogonal niches are derived using singular value decomposition and are used to apportion credit for the overall performance of the RBF network among individual nonorthogonal RBFs. Niche-based credit apportionment facilitates competition to fill each niche and hence to cover the training data. The resulting genetic algorithm yields RBF networks with better prediction performance on the Mackey-Glass chaotic time series than RBF networks produced by the orthogonal least squares method and by k-means clustering

Published in:

IEEE Transactions on Neural Networks  (Volume:7 ,  Issue: 6 )