By Topic

Complex-valued multistate neural associative memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Jankowski ; Inst. of Electron. Fundamentals, Warsaw Univ. of Technol., Poland ; A. Lozowski ; J. M. Zurada

A model of a multivalued associative memory is presented. This memory has the form of a fully connected attractor neural network composed of multistate complex-valued neurons. Such a network is able to perform the task of storing and recalling gray-scale images. It is also shown that the complex-valued fully connected neural network may be considered as a generalization of a Hopfield network containing real-valued neurons. A computational energy function is introduced and evaluated in order to prove network stability for asynchronous dynamics. Storage capacity as related to the number of accessible neuron states is also estimated

Published in:

IEEE Transactions on Neural Networks  (Volume:7 ,  Issue: 6 )