By Topic

A generalized learning paradigm exploiting the structure of feedforward neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Parisi ; INFOCOM Dept., Rome Univ., Italy ; E. D. Di Claudio ; G. Orlandi ; B. D. Rao

In this paper a general class of fast learning algorithms for feedforward neural networks is introduced and described. The approach exploits the separability of each layer into linear and nonlinear blocks and consists of two steps. The first step is the descent of the error functional in the space of the outputs of the linear blocks (descent in the neuron space), which can be performed using any preferred optimization strategy. In the second step, each linear block is optimized separately by using a least squares (LS) criterion. To demonstrate the effectiveness of the new approach, a detailed treatment of a gradient descent in the neuron space is conducted. The main properties of this approach are the higher speed of convergence with respect to methods that employ an ordinary gradient descent in the weight space backpropagation (BP), better numerical conditioning, and lower computational cost compared to techniques based on the Hessian matrix. The numerical stability is assured by the use of robust LS linear system solvers, operating directly on the input data of each layer. Experimental results obtained in three problems are described, which confirm the effectiveness of the new method

Published in:

IEEE Transactions on Neural Networks  (Volume:7 ,  Issue: 6 )