By Topic

A 10 Gb/s hybrid-integrated receiver array module using a planar lightwave circuit (PLC) platform including a novel assembly region structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
S. Mino ; NTT Opto-Electron. Labs., Ibaraki, Japan ; T. Ohyama ; Y. Akahori ; T. Hashimoto
more authors

A planar lightwave circuit (PLC) platform for optoelectronic hybrid integration shows potential for achieving 10 Gb/s operation. It uses AuSn bump-type bonding pads on a silica layer to decrease parasitic capacitance, which limited the CR time constant in the optical chip assembly region, and two-layer electrical wiring to reduce parasitic inductance, which caused resonance in the electrical circuit region. An arrayed receiver module fabricated by integrating a two-channel monolithic opto-electronic integrated circuit (OEIC) chip on the PLC platform demonstrated a 3 dB-bandwidth of 8 GHz in both channels, which is equal to the bandwidth of the OEIC chip. This shows the feasibility of using this PLC platform for multichannel 10 Gb/s operation. Furthermore, this PLC platform can combine the versatile optical circuit functions of a PLC, such as an arrayed-waveguide grating wavelength multiplexer, with the high-speed signal processing function of mature electronic IC circuits. Consequently, this platform is a key device that will lead to high-capacity optical signal processing systems using optical wavelength/frequency routing

Published in:

Journal of Lightwave Technology  (Volume:14 ,  Issue: 11 )