Cart (Loading....) | Create Account
Close category search window
 

A Mine on Its Own

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vasudevan, S. ; Comput. Sci. & Eng., Univ. of Madras, Chennai, India ; Ramos, F. ; Nettleton, E. ; Durrant-Whyte, H.

This article presents a study of Gaussian process (GP) models applied to the problems of modeling and data fusion in the context of large-scale terrain modeling. The proposed model naturally provides a multiresolution representation of space, incorporates and handles uncertainties aptly, and copes with incompleteness of sensory information. These attributes are considered essential to support most field robotics applications, including autonomous mining. GP regression techniques are applied to estimate and interpolate (to fill gaps in occluded areas) elevation information across the field. GP approximation methods are introduced to enable the application of the proposed techniques to large data sets. To obtain a comprehensive model of complex terrain, typically, multiple sensory modalities and multiple data sets are required. The GP modeling approach is consequently extended to fuse multiple, multimodal data sets to obtain a best estimate of the elevation given the individual data sets. Two different GP-based concepts are applied to perform data fusion-heteroscedastic GPs and dependent GPs (DGPs). Thus, this article presents a report on an ongoing study of the use of GPs and several GPbased concepts to the problem of large-scale terrain modeling in the context of mining automation.

Published in:

Robotics & Automation Magazine, IEEE  (Volume:17 ,  Issue: 2 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.