By Topic

A Hybrid Method to Predict Angina Pectoris through Mining Emergency Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sung Ho Ha ; Sch. of Bus. Adm., Kyungpook Nat. Univ., Daegu, South Korea ; Zhen Yu Zhang ; Eun Kyoung Kwon

The Emergency Department (ED) has been frustrated by the problems of overcrowding, long waiting times and high costs over decades. With the development of computer techniques, various kinds of information systems have appeared and make people work more effectively, the Emergency Department Information System (EDIS) has been heralded as a "must" for the modern ED. This paper tries to build a hybrid method to predict angina pectoris in the form of EDIS. Based on the frameworks of patients flow in ED, real-world data were collected from the electronic medical records at the ED: more than 210000 records of 842 registered chest pain patients in total. By utilizing the data mining techniques, an expert system was proposed to help physicians with faster and more accurate decision making of diagnosis and lab test selections when they are diagnosing with angina pectoris patients.

Published in:

Information Science and Applications (ICISA), 2010 International Conference on

Date of Conference:

21-23 April 2010