Cart (Loading....) | Create Account
Close category search window
 

Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Koyama, D. ; Precision & Intell. Lab., Tokyo Inst. of Technol., Yokohama, Japan ; Nakamura, K.

We have developed a noncontact ultrasonic technique for transporting small objects with a linear trajectory over long distances using a bending vibrating plate and a reflector. In this paper, noncontact transportation of small particles around a circular trajectory was investigated. A circular aluminum plate with a piezoelectric ring was employed as a vibrating plate. On the basis of finite element analysis (FEA) calculations, the electrodes of the piezoelectric ring were divided into 24 pieces to generate a flexural vibration mode with one nodal circle and four nodal lines at the resonance frequency of 47.8 kHz. A circular plate having the same dimensions as the vibrating plate was installed parallel to the vibrator. It was used as a reflector to generate an acoustic standing wave in the air between the two plates. The acoustic field between the vibrating plate and reflector was calculated by FEA and the distribution of the acoustic radiation force acting on a small rigid particle was calculated to predict the position of the trapped particle. Using a prototype of the vibrating plate, polystyrene particles with diameters of several millimeters could be trapped at regular intervals along the horizontal nodal line of the standing wave. The sound pressure distribution between the vibrating plate and reflector was measured by a fiber optic probe and the experimental and calculated results showed good agreement. By switching the driving conditions of the divided electrodes in the circumferential direction, the nodal lines of the vibrating plate could be rotated and the trapped particle could be manipulated with a circular trajectory in air.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:57 ,  Issue: 6 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.