By Topic

Enhancing text image binarization using 3D tensor voting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Toan Nguyen Dinh ; Electron. & Comput. Eng., Chonnam Nat. Univ., Gwangju, South Korea ; Jonghyun Park ; Gueesang Lee

Text image binarization is an important step in text image analysis and text understanding systems. Some corrupted regions may remain in the binarization result due to noises such as dust, streaks, shadows and small unwanted objects. In this paper, a novel method based on 3D tensor voting is proposed for enhancing text image binarization. The 3D tensor voting is used to detect corrupted regions by analysing surfaces of text stroke and background in a binary image. Our method is effective on binary images having gaps in text stroke or noise regions in background.

Published in:

Signal and Image Processing Applications (ICSIPA), 2009 IEEE International Conference on

Date of Conference:

18-19 Nov. 2009