Cart (Loading....) | Create Account
Close category search window
 

An EMG-driven musculoskeletal model for robot assisted stroke rehabilitation system using sliding mode control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parasuraman, S. ; Sch. of Eng., Monash Univ., Bandar Sunway, Malaysia ; Oyong, A.W.

Numerous researches have been carried out to use robot in the area of stroke rehabilitations. The conventional approach is to assist patient to perform Activities of Daily Living (ADL) through a set of pre-programmed trajectories. The main drawback lies in the lack of voluntary movement by the patient. Many of these works have been carried out by using positional feedback control. In this kind of system, it is difficult to assess patient's muscle condition, which may results in inconveniences due to torques or forces asserted by the rehabilitation robot. The main aim of the project is to build a stroke rehabilitation system using socially inspired robot technique. The system monitors patient's muscle activity and uses this information to drive an exoskeleton robot that will assist patient to his/her arm. Movement is generated based on voluntary muscle activity by patient and therefore will improve their learning curve. Another main advantage is the system minimizes patient's inconveniences due to movement by robot. The system is based on torque feedback control. A sliding mode control was implemented in replace of conventional control. The main advantage of sliding mode control over conventional control is its robustness. Sliding mode control does not require precise mathematical model of the system and it is insensitive to parametric changes and uncertainties within the system.

Published in:

Mechatronics and its Applications (ISMA), 2010 7th International Symposium on

Date of Conference:

20-22 April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.