By Topic

Approximation of Loop Subdivision Surfaces for Fast Rendering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guiqing Li ; Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China ; Canjiang Ren ; Jiahua Zhang ; Weiyin Ma

This paper describes an approach to the approximation of Loop subdivision surfaces for real-time rendering. The approach consists of two phases, which separately construct the approximation geometry and the normal field of a subdivision surface. It first exploits quartic triangular Bézier patches to approximate the geometry of the subdivision surface by interpolating a grid of sampled points. To remedy the artifact of discontinuity of normal fields between adjacent patches, a continuous normal field is then reconstructed by approximating the tangent vector fields of the subdivision surfaces with quartic triangular Bézier patches. For regular triangles, the approach reproduces the associated subdivision patches, quartic three-directional box splines.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:17 ,  Issue: 4 )