By Topic

On the Cost of Network Inference Mechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Blanton, E. ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Fahmy, S. ; Frederickson, G.N. ; Gangam, S.

A number of network path delay, loss, or bandwidth inference mechanisms have been proposed over the past decade. Concurrently, several network measurement services have been deployed over the Internet and intranets. We consider inference mechanisms that use O(n) end-to-end measurements to predict the O(n2) end-to-end pairwise measurements among n nodes, and investigate when it is beneficial to use them in measurement services. In particular, we address the following questions : 1) For which measurement request patterns would using an inference mechanism be advantageous? 2) How does a measurement service determine the set of hosts that should utilize inference mechanisms, as opposed to those that are better served using direct end-to-end measurements? We explore three solutions that identify groups of hosts which are likely to benefit from inference. We compare these solutions in terms of effectiveness and algorithmic complexity. Results with synthetic data sets and data sets from a popular peer-to-peer system demonstrate that our techniques accurately identify host subsets that benefit from inference, in significantly less time than an algorithm that identifies optimal subsets. The measurement savings are large when measurement request patterns exhibit small-world characteristics, which is often the case. (Part of this work (focusing on one of three solutions presented in this paper) appeared in).

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 4 )