Cart (Loading....) | Create Account
Close category search window
 

Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

To efficiently solve challenges related to motion-planning problems with dynamics, this paper proposes treating motion planning not just as a search problem in a continuous space but as a search problem in a hybrid space consisting of discrete and continuous components. A multilayered framework is presented which combines discrete search and sampling-based motion planning. This framework is called synergistic combination of layers of planning ( SyCLoP) hereafter. Discrete search uses a workspace decomposition to compute leads, i.e., sequences of regions in the neighborhood that guide sampling-based motion planning during the state-space exploration. In return, information gathered by motion planning, such as progress made, is fed back to the discrete search. This combination allows SyCLoP to identify new directions to lead the exploration toward the goal, making it possible to efficiently find solutions, even when other planners get stuck. Simulation experiments with dynamical models of ground and flying vehicles demonstrate that the combination of discrete search and motion planning in SyCLoP offers significant advantages. In fact, speedups of up to two orders of magnitude were obtained for all the sampling-based motion planners used as the continuous layer of SyCLoP.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.