By Topic

Design and Analysis of Molecular Relay Channels: An Information Theoretic Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tadashi Nakano ; Frontier Research Base for Global Young Researchers, Frontier Research Center, Graduate School of Engineering, Osaka University, MSR IJARC, Suita, Japan ; Jian-Qin Liu

In this paper, we consider a molecular relay channel in which signal molecules are transmitted by a sender of communication, propagated, amplified, removed in the channel, and sensed by the receiver of communication that decodes the signal molecules. To understand and characterize the communication capacity of the molecular relay channel, we develop an information communication model that consists of the transmitter, channel, and receiver. Mutual information is used to quantify the amount of information that is transferred from the transmitter through the channel to the receiver. The method employed and results presented in this paper may help elucidate design principles of biological systems as well as help in the design and engineering of synthetic biological systems from the perspective of information theory.

Published in:

IEEE Transactions on NanoBioscience  (Volume:9 ,  Issue: 3 )