By Topic

Clustering Relational Database Entities Using K-means

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Farid Bourennani ; Inst. of Technol., Univ. of Ontario, Oshawa, ON, Canada ; Mouhcine Guennoun ; Ying Zhu

The fast evolution of hardware and the internet made large volumes of data more accessible. This data is composed of heterogeneous data types such as text, numbers, multimedia, and others. Non-overlapping research communities work on processing homogeneous data types. Nevertheless, from the user perspective, these heterogeneous data types should behave and be accessed in a similar fashion. Processing heterogeneous data types, which is Heterogeneous Data Mining (HDM), is a complex task. However, the HDM by Unified Vectorization (HDM-UV) seems to be an appropriate solution for this problem because it permits to process the heterogeneous data types simultaneously. In this paper, we use K-means and Self-Organizing Maps for simultaneously processing textual and numerical data types by UV. We evaluate how the HDM-UV improves the clustering results of these two algorithms (SOM, K-means) by comparing them to the traditional homogeneous data processing. Furthermore, we compare the clustering results of the two algorithms applied to a data integration problem.

Published in:

Advances in Databases Knowledge and Data Applications (DBKDA), 2010 Second International Conference on

Date of Conference:

11-16 April 2010