By Topic

Image denoising using Contourlet and two-dimensional Principle Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhe Liu ; Sch. of Sci., Northwestern Polytech. Univ., Xi''an, China ; Huanan Xu

This paper proposes a novel image denoising algorithm using the Contourlet transform and the two-dimensional Principle Component Analysis (2DPCA). The noise image can be decomposed by the Contourlet into directional subbands. The 2DPCA is then carried out to estimate the threshold for the image blocks in high frequency subbands. The soft thresholding shrinkage can hence be employed on the Contourlet coefficients without estimating the noise variance. The denoising algorithm is validated by numerical experiments on two images. Numerical results show that the proposed method can obtain higher PSNR than former methods.

Published in:

Image Analysis and Signal Processing (IASP), 2010 International Conference on

Date of Conference:

9-11 April 2010