By Topic

Image reconstruction using high-level constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. Tsuruta ; Dept. of Intelligent Syst., Kyushu Univ., Fukuoka, Japan ; R. Taniguchi ; M. Amamiya

In this paper, we propose a strategy to improve the performance of image reconstruction using a selective attention mechanism in a multi-layered neural network. The selective attention mechanism enables us to use top-down information as high-level and global constraints. The traditional algorithms using regularization techniques are quite sensitive to values of parameters, and it is quite difficult to select their appropriate values, because the algorithms use low-level and local constraints. Our strategy uses high-level and global constraints, and modifies the values of parameters locally and automatically

Published in:

Pattern Recognition, 1996., Proceedings of the 13th International Conference on  (Volume:4 )

Date of Conference:

25-29 Aug 1996