By Topic

Robustness analysis and new hybrid algorithm of wideband source localization for acoustic sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kun Yan ; Dept. of Electr. & Comput. Eng., Louisiana State Univ., Baton Rouge, LA, USA ; Hsiao-Chun Wu ; Iyengar, S.S.

Wideband source localization using acoustic sensor networks has been drawing a lot of research interest recently in wireless communication applications, such as cellular handset localization, global positioning systems (GPS), and land navigation technologies, etc. The maximum-likelihood is the predominant objective which leads to a variety of source localization approaches. However, the appropriate optimization (search) algorithms are still being pursuit by researchers since different aspects about the effectiveness of such algorithms have to be addressed on different circumstances. In this paper, we focus on the two popular source localization methods for wideband acoustic signals, namely the alternating projection (AP) algorithm and the expectation maximization (EM) algorithm. We explore the respective limitations of these two methods and design a new hybrid approach thereupon. Through Monte Carlo simulations, we demonstrate that the trade-off can be achieved between the computational complexity and the localization accuracy using our newly proposed scheme. Moreover, we present the new robustness analysis for the source localization algorithms. We derive the Cramer-Rao lower bound (CRLB) involving the source spectral estimation error and thus prove that the new hybrid algorithm is more efficient than the EM algorithm. By employing the Gaussianity test, we also quantify the statistical mismatch between the actual statistics of the sensor signals and the underlying Gaussian model. We show that the Gaussianity measure can be a reliable robustness figure for source localization.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 6 )