By Topic

Digital Microfluidic Logic Gates and Their Application to Built-in Self-Test of Lab-on-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Zhao ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Chakrabarty, K.

Dependability is an important system attribute for microfluidic lab-on-chip. Robust testing methods are therefore needed to ensure correct results. Previously proposed techniques for reading test outcomes and for pulse-sequence analysis are cumbersome and error prone. We present a built-in self-test (BIST) method for digital microfluidic lab-on-chip. This method utilizes digital microfluidic logic gates to implement the BIST architecture; AND, OR and NOT gates are used to compress multiple test-outcome droplets into a single droplet to facilitate detection with low overhead. These approaches obviate the need for capacitive sensing test-outcome circuits for analysis. We also apply the BIST architecture to a pin-constrained biochip design. A multiplexed bioassay protocol is used to evaluate the effectiveness of the proposed test method.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:4 ,  Issue: 4 )