Cart (Loading....) | Create Account
Close category search window
 

Chirp Multiplication by Four Wave Mixing for Wideband Swept-Frequency Sources for High Resolution Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Satyan, N. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Rakuljic, G. ; Yariv, A.

We present an analysis and demonstration of the doubling of the chirp rate and total chirp bandwidth of a frequency chirped optical signal by the process of four-wave mixing in a non-linear optical medium. The effects of chromatic dispersion and input power on the maximum achievable output bandwidth are analyzed, and a dispersion compensation technique for phase matching is described. The doubling of an input linear frequency sweep of 100 GHz/1 ms in a highly nonlinear optical fiber is experimentally demonstrated. Further, it is proposed that a cascaded implementation of the four-wave mixing process leads to a geometric increase in the bandwidth of the frequency chirp. With an electronically tuned chirped laser at the input stage, this process can be used to generate extremely wideband swept frequency sources with no moving parts, for applications in high-speed and high-resolution optical imaging and spectroscopy.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 14 )

Date of Publication:

July15, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.