Cart (Loading....) | Create Account
Close category search window
 

Joint Feature Correspondences and Appearance Similarity for Robust Visual Object Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khan, Z.H. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden ; Gu, I.Y.-H.

A novel visual object tracking scheme is proposed by using joint point feature correspondences and object appearance similarity. For point feature-based tracking, we propose a candidate tracker that simultaneously exploits two separate sets of point feature correspondences in the foreground and in the surrounding background, where background features are exploited for the indication of occlusions. Feature points in these two sets are then dynamically maintained. For object appearance-based tracking, we propose a candidate tracker based on an enhanced anisotropic mean shift with a fully tunable (five degrees of freedom) bounding box that is partially guided by the above feature point tracker. Both candidate trackers contain a reinitialization process to reset the tracker in order to prevent accumulated tracking error propagation in frames. In addition, a novel online learning method is introduced to the enhanced mean shift-based candidate tracker. The reference object distribution is updated in each time interval if there is an indication of stable and reliable tracking without background interferences. By dynamically updating the reference object model, tracking is further improved by using a more accurate object appearance similarity measure. An optimal selection criterion is applied to the final tracker based on the results of these candidate trackers. Experiments have been conducted on several videos containing a range of complex scenarios. To evaluate the performance, the proposed scheme is further evaluated using three objective criteria, and compared with two existing trackers. All our results have shown that the proposed scheme is very robust and has yielded a marked improvement in terms of tracking drift, tightness, and accuracy of tracked bounding boxes, especially for complex video scenarios containing long-term partial occlusions or intersections, deformation, or background clutter with similar color distributions to the foreground object.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:5 ,  Issue: 3 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.