By Topic

Polarimetric SAR Data in Land Cover Mapping in Boreal Zone

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Anne Lonnqvist ; VTT Technical Research Centre of Finland, Espoo, Finland ; Yrjö Rauste ; Matthieu Molinier ; Tuomas Hame

This paper compares ALOS PALSAR fully polarimetric and dual-polarized data in the application area of land cover mapping. To assure versatile comparison of the data, different classification methods and different features of data are used. Two of the classification methods used are based on supervised classification and two on unsupervised classification. Polarimetric data are used in three ways: (1) as fully polarimetric data; (2) features calculated from fully polarimetric data; and (3) intensity data of selected channels. Combinations of six (water, field, sparse forest, dense forest, peat land, and urban areas), five, four, and three classes were used for classification. Fully polarimetric data gave better results (87.5%-84.7% with three classes; open land areas, forest, and water) than intensity data only (83.6%-78.6%), but the differences in the overall accuracies between the methods were not more than 7.6%. Kappa coefficients of agreement are moderate for all the classifications. Supervised classification can be expected to perform better than unsupervised classification, given that the training areas can be selected accurately. Dual polarization data were found to be an attractive alternative in cases where fully polarimetric data are not available or it is of low resolution. With intensities of selected polarimetric features, it was possible to obtain a high classification accuracy as with fully polarimetric data. This also opens possibilities for nonspecialist users to benefit from polarimetric information in classification.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:48 ,  Issue: 10 )