By Topic

Driving Safety Monitoring Using Semisupervised Learning on Time Series Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinjun Wang ; NEC Labs. America, Inc., Cupertino, CA, USA ; Shenghuo Zhu ; Yihong Gong

This paper introduces a dangerous-driving warning system that uses statistical modeling to predict driving risks. The major challenge of the research is how to discover the safe/dangerous driving patterns from a sparsely labeled training data set. This paper proposes a semisupervised learning method to utilize both the labeled and the unlabeled data, as well as their interdependence to build a proper danger-level function. In addition, the learned function adopts a continuous parametric form, which is more suitable in modeling the continuous safe/dangerous-driving state transitions in a practical dangerous-driving warning system. Our comprehensive experimental evaluations reveal that, in comparison with driving danger-level estimation using classification-based methods, such as the hidden Markov model (HMM) or the conditional random field algorithm, the proposed method requires less training time and achieved higher prediction accuracy.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:11 ,  Issue: 3 )