By Topic

AI and Opinion Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsinchun Chen ; University of Arizona ; David Zimbra

The advent of Web 2.0 and social media content has stirred much excitement and created abundant opportunities for understanding the opinions of the general public and consumers toward social events, political movements, company strategies, marketing campaigns, and product preferences. Many new and exciting social, geopolitical, and business-related research questions can be answered by analyzing the thousands, even millions, of comments and responses expressed in various blogs (such as the blogosphere), forums (such as Yahoo Forums), social media and social network sites (including YouTube, Facebook, and Flikr), virtual worlds (such as Second Life), and tweets (Twitter). Opinion mining, a subdiscipline within data mining and computational linguistics, refers to the computational techniques for extracting, classifying, understanding, and assessing the opinions expressed in various online news sources, social media comments, and other user-generated content. Sentiment analysis is often used in opinion mining to identify sentiment, affect, subjectivity, and other emotional states in online text.

Published in:

IEEE Intelligent Systems  (Volume:25 ,  Issue: 3 )